
IoT Wildfire Detection
Group 4

Aracely, Jose, Julia, Logan, Quinn, & Salvador

I. Executive Summary
Wildfires are a statewide problem in California. Every year they destroy large

swathes of our natural areas because of how quickly they can grow out of control. This

means we need a better way to handle them. Our product, the IoT Wildfire Detection

Device, is a solution to this problem. One of the biggest hurdles in wildfire prevention is

knowing exactly where and when they start. This is especially apparent when they start

in remote wilderness areas uninhabited by humans. By utilising various sensors, cellular

networks, and Microsoft Azure’s IoT platform, we will be able to detect when and where

wildfires happen and notify the proper authorities in record times. This will create faster

response times and give more detailed information about the fire, giving firefighters

every advantage we can.

It is true that our firefighters have always been able to protect us, but the world is

changing and fires are getting more dangerous every year. We used to have a set fire

season that we could prepare for each year, but with climate change, science has been

showing that soon it might be fire season all year. These higher temperatures from

climate change also mean that fires can grow out of control faster than ever before.

Just last year large parts of Santa Cruz county were evacuated because a dry lightning

storm started a wildfire in one of our state parks. If we had information about exactly

when and where the fires started there is a chance that we could have contained it

better before it grew so far out of control. At the end of the day, we might need more

than just better detection. But we need to start somewhere and detection is affordable,

effective, and most importantly, it is achievable.

II. Ethics Statement

1. We agree to be bound by the code of ethics of the IEEE.
2. We pledge to ethically source the electronic parts necessary to realize our design

project.
3. We pledge to design an alarm system that benefits all parties of interest equally

with no preferential treatment toward any one person or group.

IEEE Code of Ethics

We, the members of the IEEE, in recognition of the importance of our technologies in
affecting the quality of life throughout the world, and in accepting a personal obligation
to our profession, its members and the communities we serve, do hereby commit
ourselves to the highest ethical and professional conduct and agree:

I. To uphold the highest standards of integrity, responsible behavior, and ethical conduct
in professional activities.

1. to hold paramount the safety, health, and welfare of the public, to strive to
comply with ethical design and sustainable development practices, to protect the
privacy of others, and to disclose promptly factors that might endanger the public
or the environment;

2. to improve the understanding by individuals and society of the capabilities and
societal implications of conventional and emerging technologies, including
intelligent systems;

3. to avoid real or perceived conflicts of interest whenever possible, and to
disclose them to affected parties when they do exist;

4. to avoid unlawful conduct in professional activities, and to reject bribery in all its
forms;

5. to seek, accept, and offer honest criticism of technical work, to acknowledge
and correct errors, to be honest and realistic in stating claims or estimates based
on available data, and to credit properly the contributions of others;

6. to maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or experience, or after full
disclosure of pertinent limitations;

II. To treat all persons fairly and with respect, to not engage in harassment or
discrimination, and to avoid injuring others.

7. to treat all persons fairly and with respect, and to not engage in discrimination
based on characteristics such as race, religion, gender, disability, age, national
origin, sexual orientation, gender identity, or gender expression;

8. to not engage in harassment of any kind, including sexual harassment or
bullying behavior;

9. to avoid injuring others, their property, reputation, or employment by false or
malicious actions, rumors or any other verbal or physical abuses;

III. To strive to ensure this code is upheld by colleagues and co-workers.

10. to support colleagues and co-workers in following this code of ethics, to strive
to ensure the code is upheld, and to not retaliate against individuals reporting a
violation.

Adopted by the IEEE Board of Directors and incorporating revisions through June 2020.

Table of Contents

I. Executive Summary
II. Ethics Statement

1. Introduction
1.1. Need Statement
1.2. Goal Statement
1.3. Design Objectives
1.4. Personas

2. Design
2.1. CAD Prototype
2.2. Proposed Enclosure/Placement Design
2.3. Web Application Prototype
2.4. Design for Manufacture & Assembly
2.5. Life Cycle Assessment

3. Diagrams
3.1. High Level System Overview
3.2. Wiring Diagram
3.3. Fire Risk State Diagram
3.4. Microcontroller State Diagram

4. Technology
4.1. Hardware
4.2. Microcontroller code
4.3. Server Backend
4.4. Server Frontend
4.5. Database

5. Simulation
6. Functional Prototype

6.1. Black Box Demo
7. Testing

7.1. Hardware Tests
7.2. Microcontroller Tests
7.3. Cloud Tests

A. Appendix
1. Problem Formulation

i. Brainstorming Output

ii. Morphological Chart
iii. Decision Table

2. Planning
i. Gantt Chart
ii. CPM & PERT Analysis
iii. Division of Labor and Collaboration

3. Test Plan & Results
4. Review

1. Introduction

1.1. Need Statement

We need to reduce the damage that is caused by wildfires.

1.2. Goal Statement

Minimize the delay for:
1. Firefighters to begin suppressing wildfires when they start
2. Local inhabitants to be notified of a fire near or in their community

2.3. Design Objectives

Design a system that can:
● Accurately detect fires in an ar ea with 4g available that spans at least 5 acres
● Display accessible, accurate and up-to-date information regarding the fire risk

throughout the area
● Send firefighters and residents prompt and accurate notifications of an imminent

fire
● Be easily set up and maintained (e.g. has a low battery replacement cost)
● Be quickly, cheaply, and sustainably manufactured and assembled

Design Objective Units Target/Range

Fire Detection Accuracy % > 90%

Fire Risk Accuracy % > 80%

Fire Alarm Alert Delay Minutes < 1

Time Between Battery Replacements Months > 3

Range of Fire Detection System Acres > 7,000

Cost to Manufacture System USD < 7,000,000

Time to Manufacture System Months < 3

Time to Assemble System Months < 1

Design Constraint Units Target/Range

Wireless Connectivity Required in Area Protocols 4g LTE
In the above table, “system” refers to the whole network of devices covering a

single area. In the above table the numbers stem from Wilder Ranch State Park, which
is 7000 acres.

Our $1,000 per acre number comes from CAL Fire estimates that 4.3 million
acres burned in 2020, and it cost roughly $12 billion in damages. This means that the
average cost per acre was just over $2,700. We think that undercutting that by over half
should be sufficient to make our product cost effective.

1.4. Personas

Name: Tim Sexton
Role: Program Manager for the Wildland Fire Research
Development & Applications program. His responsibilities
include management of the Wildland Fire Decision Support
System as well as facilitating technology transfer of new science
associated with wildland fire to the field.
Background/ Context: He previously served as a Type 1
Incident Commander on Great Basin IMT 1 and as a Type 2 IC
on Rocky Mountain IMT #2. He remains active in large fire
management, serving on Area Command and the Command
and General Staff of Type 1 IMTs. Tim has a Bachelor’s Degree
in History from Boise State University and a Master’s Degree in Fire Ecology from
Oregon State University. Tim started his fire career as an engine and fuels crewmember
on the Shasta-Trinity NF at Weaverville Ranger District
Profile Link: https://wfmrda.nwcg.gov/about-us/meet-wfm-rda-staff
Interview: https://www.youtube.com/watch?v=U4uaqAWMLtw

Name: Scott Stephens
Role: Professor at UC Berkeley and researcher for the Fire
Science Laboratory conducting scientific research and providing
academic training in the fields of wildland fire science, ecology,
and resource management.
Profile Link:
https://ourenvironment.berkeley.edu/people/scott-stephens
Research Lab: https://nature.berkeley.edu/stephenslab/
Ted Talk: https://www.youtube.com/watch?v=2r7JI6zVwf0

https://wfmrda.nwcg.gov/about-us/meet-wfm-rda-staff
https://www.youtube.com/watch?v=U4uaqAWMLtw
https://ourenvironment.berkeley.edu/people/scott-stephens
https://nature.berkeley.edu/stephenslab/
https://www.youtube.com/watch?v=2r7JI6zVwf0

Name: Ian Larkin (Client)
Role: Unit Chief of the San Mateo Santa Cruz Unit
Goal/Mission: The management and protection of California's
natural resources; a goal that is accomplished through ongoing
assessment and study of the State's natural resources and an
extensive CAL FIRE Resource Management Program. CAL FIRE
oversees enforcement of California's forest practice regulations,
which guide timber harvesting on private lands. Department
foresters and fire personnel work closely to encourage and
implement fuels management projects to reduce the threat of
uncontrolled wildfires. CAL FIRE Foresters promote conservation and the importance of
our trees and forests to Californians of all ages.
Profile Link: https://www.coastsidefire.org/about-the-chief

https://www.coastsidefire.org/about-the-chief

2. Design
2.1. CAD Prototype

The CAD model above will be further developed once we finalize the electrical
configuration of the device as well as the design of the enclosure. It currently shows the
battery, 4g module and ESP32 connected together.

2.2. Proposed Enclosure/Placement Design

Key:
1) Solar panel
2) Dust filters and scaffolding
3) Electronic components and battery

This sketch shows the design of our enclosure, which is shown as a cross-section. It
was created to address some concerns that come from its intended deployment in a
remote, outdoor environment.

In order to function correctly, each device in the network has to be ventilated so
that it can detect changes in CO2 and humidity in the surrounding air, but its
components also need to be protected from rain and dust. The enclosure’s only opening
is a vertical tunnel that allows air to rise into the device while blocking rain from the
front. The tunnel would also contain scaffolding for stability as well as filters to block out
dust.

We decided to fasten each device to a tree because wind could move the
devices out of their intended positions, giving the monitored area uneven coverage, and
it could also cause them to get damaged. The enclosure in the sketch has two tabs on
the top and bottom that could be drilled or stapled to the tree.

A solar panel on top of the enclosure would harvest energy, reducing the cost of
battery replacements. The solar panel’s mount would be adjustable during deployment
to ensure that each device could harvest as much energy as possible.

2.3. Web Application Prototype

This is a screenshot of our web app’s prototype. The app contains a map of the area
our devices would monitor, with each dot corresponding to a sensor device. The color of
the dot represents the fire risk at each device.

2.4. Design for Manufacture & Assembly

Design for Manufacture
● To make our design easy to manufacture we attempted to use parts that were

readily available on the market. Our carbon and rain sensors and microcontroller
came from Banggood, an online distributor. Our new temperature and humidity
sensor is arduino compatible so it is available on many online retailers such as
Adafruit. The part for us to source was our battery because we could not find

them in stock in December, however, they also became readily available early
this year.

● For any parts to our design that were not going to be made by a large
manufacturer, we discussed that we would design them to be 3D printed so that
we could either buy a 3D printer and generate them ourselves or go to a
company and bulk 3D print them. This would include our casing to hold all of the
sensors and microcontroller, as well as the weather-proof enclosure we would
screw into trees to keep our devices in place.

Design for Assembly & Maintenance
● To make our devices as easy to assemble as possible, we have ordered parts

that do not require any special wiring or assembly after we receive them. We will
also plan to use standard eighth inch screws for securing our enclosures, and
long quarter inch screws to attach the devices into trees.

● To make attaching our devices to trees easy, we will have two holes for screws
on the main enclosure. There will be one on top and one on the bottom which will
be used to secure the whole enclosure to trees.

● The main two types of maintenance that our group has predicted are replacing
broken components or dead batteries. To make maintaining our devices as easy
as possible, we will include an easy to open flap on the back of the enclosures
(side facing the tree). Having the opening on the back ensures that the device
will not open unless it is removed from the tree first, and that we can access each
of the components without worrying about damaging any of the internals.

2.5. Life Cycle Assessment

We chose an ESP32 model development board that has a working current of 200mA
and 3350mAh 4.87A batteries to power the device. We have plans on using a solar
panel to recharge the batteries and ultimately extend the lifespan of the device. This
aspect of the project is still under development.

3. Diagrams
3.1. High Level System Overview

To fulfill our Need & Goal Statements, we decided that this design depicted by
the block diagram was best for us. We have sensors that are responsible for
reading external input from the surrounding environment. We have a
microcontroller responsible for sending data from our sensors to our web server.
The web server will notify interested parties of the potential fire hazard in the
device’s immediate environment.

3.2. Wiring Diagram

Above is the wiring diagram for our hardware component of the project. We have
the sensors connected to the microcontroller. We also needed to supply our carbon
sensor with an external 5V as the ESP32 only offers 3.3V.

3.3 Fire Risk State Diagram

There are three states in our detection system: no fire risk, moderate fire risk, and high
fire risk. In order to transition from one state to another, a sensor’s data needs to
change, indicating whether there is an increase or decrease in fire risk.

4. Technology
4.1. Hardware

● Temperature/Humidity sensor: For our initial design we attempted to use the chip
YL-38 connected to the sensor HR202 . While attempting to use it, we were
unable to find the proper documentation, and had issues integrating it. In the next
iteration, we would be using the SHT40, a sensor from Adafruit, which has many
tutorials online and easily available documentation.

● Carbon sensor: For our carbon sensor we used the MH-Z14A PQM NDIR
Infrared Carbon Dioxide Sensor Module. We chose this sensor because it was
relatively cheap compared to its competitors but still offered a good enough
detection range for us.

● Rain sensor: To try and preserve power we used the HL-84 Rain sensor for
Arduino. This sensor was implemented so that we could determine when it is
raining and so we can know when to go to sleep to preserve power.

● Microcontroller: For our microcontroller we are using the ESP32 with a
soldered-on cellular slot. One of the main reasons we chose the ESP32 is
because it was designed for IoT applications. It has support for low-power
operations, can operate in a wide temperature range, and has good support for
internet connectivity.

4.2. Microcontroller code
● Technologies used:

○ C
● Our microcontroller has code with two main functions, reading data from the

sensors and sending it to our web server. We chose to use C because it allows
us to interact with GPIO pins and handle serial communication to read from our
sensors, while also allowing us to send https requests to our web server.

4.3. Server Backend
● Technologies used:

○ API: Node.js, Express
○ Deployment: Heroku (prototype)/Azure (final design)

● Employs authentication using JSON Web Tokens
○ Motivation: ensure that the data stored on the server is valid and private,

and prevent false alarms from being triggered by a malicious client
○ Sensor devices receive a unique web token when they are manufactured

and keep them throughout their lifespan
○ Users of the web app receive a temporary web token if they log in with a

recognized email-password pair
○ A valid web token needs to be sent in the header of every request to the

server for it to be accepted
○ There are different user roles that access the server, and they each have

their own set of HTTP endpoints that they are authorized to access. The
table below lists which roles can access each endpoint.

● API:
○ Request inputs would be sanitized and checked that they match the API

specification, but this has not been done in the prototype. The DELETE
/nodes endpoint was also left out of the prototype.

API Specification
Endpoint Description User Roles Request

header
Request
Body

Response
Body

POST
/nodes/locat
ion

Provide
location of
sensor node

Machine Authorizatio
n: Bearer
<API key>

{"lat":
Latitude of
device,
"lon":
Longitude of
device}

None

POST
/nodes/data

Submit data
from a
sensor node

Machine Authorizatio
n: Bearer
<API key>

{"temp":
Temperatur
e,
"humid":
Humidity ,
"wind":
Wind
speed,
"co2": CO2}

None

POST
/authenticat
e

Authenticat
e user

None
required

Content-Typ
e:
application/j
son

{"email":
User's
email,
"password":
User's
password}

None

GET /nodes Receive
data about
all nodes

Member or
Admin

Authorizatio
n: Bearer
<API key>

None {"nodes": [{
"lat":
Latitude of
node,
"lon":
Longitude of
node,
"fireRisk":
Fire risk
}] }

DELETE
/nodes

Deauthorize
a node

Admin Authorizatio
n: Bearer
<API key>

{“id”: ID of
node to
delete}

None

● Data handling workflow:
○ Our final design would use a fire detection method that would prevent as

many false-positive fire alerts as possible and have high server
performance. In the future we would discover a suitable method for this by
looking at current research into the topic. In the current iteration of our
design, on the endpoint handler for POST /nodes/data, this new data is
added to the database and also passed into a fire detection function. The
function returns the fire risk as a value between 0 and 100, with a larger
value representing a higher risk. An alarm is sent if the risk is higher than
a predefined threshold value. We would have to tune this threshold by
testing this part of the system.

● Fire Alerts:
○ We could use an already-existing channel for sending evacuation alerts
○ Alerts could prompt first-responders to examine the location of interest for

a fire, and they would be prompted to either confirm it or flag it as a
false-positive

4.4. Server Frontend
● Technologies used: HTML, CSS, JavaScript, D3.js, Mapbox GL JS
● Workflow of app:

○ User logs in with form, which is sent as a POST request to /auth
○ If the user is successfully authenticated, the response of POST /auth is

stored in local storage. The map then loads, and the app sends a GET
request to /nodes every 2 seconds to fetch new data about the sensor
devices. This data changes the color and position of the dots according to
the fire risk and location of the corresponding sensor node

○ If authentication fails, the app displays a pop-up with the message
“Incorrect email or password”

● Modifications for final design:
○ User should be able to deauthorize nodes from web UI
○ When the web token times out, the app should stop sending requests and

ask the user to log in again

4.5. Database
● Technologies used:

○ Mysql, Javascript, Azure
● Our database uses a MySQL database in Microsoft Azure to hold our data for

future use. It is set up with a large database to hold a table for each of our
devices. The table has fields: An entry ID number, the date it was entered, and a
field for each of our sensor readings as shown below.

● In our current system we are only using our database for storing the data we
collect. We hope that in the future if we collect enough data, we will be able to
use it to improve our fire risk thresholds and maybe turn our system into a
predictive system as opposed to the reactive system it currently is.

5. Simulation
5.1. Simulating devices

In order to test our server/web application independently from our devices, we
used Postman to send HTTPS requests to our web server. Using different API keys we
were able to simulate multiple devices to see how they were represented in our web
application. Using this method we were also able to test our thresholds for changing the
color of the dots from green to yellow to red very easily.
5.2. Simulating web server

While waiting for the web server to be hosted with a public endpoint, we created
a basic HTTP server that matched the specification for our main server except without
the API key security. This allowed us to test sending messages from our microcontroller
to the web server independently of the main web server.

6. Functional Prototype
6.1. Implemented features

For our functional prototype we created an end-end demo. We were able to
connect a rain sensor and carbon sensor to our microcontroller. The temperature and
humidity sensor we ordered did not work for us, so we replaced it with a potentiometer
for the purposes of our demo. Our device was set up as shown in figure 1 using a
breadboard.

Figure Prototype of Device
Our microcontroller was connected to the internet over WiFi. We also planned to

use cellular data, however, we ran into SIM card issues which meant we were unable to
test the functionality of it. For our prototype we had our sensors sending data on a very
tight loop so that we would not need to wait for a sampling period to update the web

application. In our final design the sampling loop would most likely be 10+ minutes of a
modem sleep, allowing us to still passively monitor the environment and wake up to
alert the server if it detects extreme situations.

For our web application our prototype used an API key for security to identify
which device was sending it information and would store the information temporarily on
a flat JSON page. In our final design instead of storing the data temporarily, we would
put it into a Azure MySQL database. After storing the data, our web application would
update the device on its map if required. For example, if the fire risk was low the
device's dot would be green, and if it then sent high fire risk readings the dot would turn
red.

7. Testing
7.1. Hardware Tests

● In order to determine that our device will work correctly, we needed to test each
component of the IoT device separately as well as test how each component will
work together. We began by testing each sensor individually to make sure we
were getting the expected readings. The carbon sensor was tested by blowing
deeply into the sensor, causing the CO2 levels to rise up. As expected, the
output began to increase from normal ppm levels to the highest ppm
concentration level. We then left it alone for a couple of minutes and watched as
the ppm concentration went down. For the rain sensor, we tested it by
submerging it in water. The sensor's sensitivity needed to be adjusted to not
interpret a finger touch as water. Lastly, we tried testing the temperature and
humidity sensor. We used a hair dryer on high heat to increase the temperature.
In addition, we placed the sensor in a humid propagation space, but the sensor
was not responsive to the change in environment. Therefore we had to discard
that sensor.

7.2. Microcontroller Software Tests
● In order to send and receive data to the server we needed to ensure that the

microcontroller had the ability to access WiFi or cellular connection. Testing the
WiFi and cellular connectivity of the microcontroller consisted of creating an
HTML web page that would go online when the microcontroller was turned on
and users would be able to access it using their personal device. When the
microcontroller is turned off the web page should also be offline.

7.3. Cloud Tests
● When creating the cloud server we started with creating a HTTPS specification to

describe the commands that we would accept. We created a local webserver and

began testing them using Postman and curl to send HTTPS requests. Once we
knew that the basic commands worked we hosted the server in Heroku. We then
tried to access the web server from different computers to make sure it was
publicly available. After we made sure the server was available we added API
keys to increase the security and made sure that only requests with the right
permissions made it through. We then secured the front end of the server by
adding a login prompt and JWTs. At this point we started focusing on making our
fire map more interactive and integrated Mapbox so that we could have an
interactive map instead of just floating dots. After making sure that we could draw
dots we used curl requests to update the node information and show that the
dots changed color when the device location's environment changed. At this
point we gave our microcontrollers API keys and started using them to test the
full end-end functionality of our design. We also tested the basic functionality of
our database such as registering new devices and adding/retrieving data locally,
but we did not end up putting it up on Azure to truly test it.

A. Appendix
1. Problem Formulation

Brainstorming Output
Logan:

● (1) IoT Device to track use of bike paths to see which routes are most used
○ “need” : a way to find the safest, smoothest, most efficient bike paths

Sal:
● (2) Designing a device that monitors posture and movements and predicts high

risk positions. (not IoT though so probably not the best choice since that’s the
direction we want to go in)

○ “need” : a way to prevent workplace injuries and increase safety

Aracely:
● (3) Creating a tracking device to attach to veeries, tracking their migration

patterns can help predict hurricane seasons.
○ “need” : better technology to help predict the intensity of hurricanes

● (4) An IoT device that can detect CO2 & temperatures in wildfire hotspots
○ “need” : a way to predict and reduce wildfires

Julia:
● (5) Create a water dispenser that monitors how much water is left and can send

a notification when it is running low
○ “Need”: could be useful for portable water dispensers, which could be

used within environments such as a homeless encampment

Jose:
● (6) Design a robot arm to sort recyclables with sensors(visual or tactile).

○ Need: A method for sorting recyclable materials that is more cost effective
than human workers

● (7) Design a smart watering system for gardens that can water plants with
precision. Use sensors to measure moisture in the soil to water accordingly
(might be tricky depending on the plants being watered).

○ Need: A way to minimize the water spent on gardens

Quinn:
● (8) Create a budget friendly nature camera that hooks into a civilian science

database to allow passive data collection in neighborhoods.

○ Need: A better way for data to be collected in neighborhoods and other
hard to survey areas.

● (9) Build a device to help track animals' roaming patterns.
○ Need: We know the general area an animal roams, but want to

understand how temperature/humidity/etc affects their behavior.
● (10) Design a morning routine assistant (bot or just IoT controlled devices) that

will determine when you wake up and start tea/coffee, turn on a space heater,
your room lights, making toast, etc. Anything to help you get out of bed in the
morning.

○ Need: Getting out of bed in the morning can be hard.

Our group took a survey of the above ideas and decided that idea number 4 would be best.

Morphological chart

Wildfire Detection System Morphological Chart

System
Components

Options

1 2 3 4 5

Microcontroller Arduino Nano
33 IoT
Cost:
$18.40

Raspberry Pi
Model B 2GB
Cost:
$35.00

Raspberry Pi
Zero W
Cost:
$10.00

ESP32
Cost:
$15.00

Temp/Humidity
Sensor

TI HDC2021
Low-power
humidity and
temperature
digital sensor
Effective
measurement
range:
(− 40°𝐶) − (+ 1
0 - 100 RH%
Cost:
$2.67

DHT11
Temperature/
Humidity
Sensor
(pro- compatible
w arduino)
Effective
measurement
range:
(0°𝐶) − (50°𝐶)
20 - 80 RH%
Cost:
$5.00

Adafruit AHT20
Temperature &
Humidity
Sensor
(pro- reaches a
lil higher temp
ranges ~185 F)
Effective
measurement
range:
(− 40°𝐶) − (+ 8
0 - 100 RH%
Cost:
$4.50

DHT22
Temperature/Hu
midity Sensor
Effective
measurement
range:
(− 40°𝐶) − (80°𝐶
0 - 100 RH%
Cost:
$9.95

Silicon Labs
SI7013-A20-GM
1
Effective
measurement
range:
(− 10°𝐶) − (85°𝐶
0 - 100 RH%
Cost:
$3.13

Wind Sensor Anemometer
SKU:SEN0170:
Effective
measurement
range:
0-30m/s
Cost:
$48.00

Anemometer
Adafruit 1733
Effective
measurement
range:
0.5-50m/s
Cost:
$44.95

Wind Sensor
Rev. C
Effective
measurement
range:
0 - 26.8224m/s
Cost:
$17.00

Wind/Rain
sensor Argent
Systems
(Raspberry Pi
compatible)
Cost:
$68.00

Carbon Sensor Senseair K30
10,000ppm
CO2 sensor
(pro - cheap)
Effective
measurement
range:
0 - 10,000 ppm
CO2
Cost:
$85.00

Gravity: Analog
CO2 gas sensor
(pro- compatible
w arduino)
Effective
measurement
range:
350-10,000 ppm
CO2
Cost:
$56.00

Adafruit SCD-30
- NDIR CO2
Temperature
and Humidity
Sensor
Effective
measurement
range:
400-10,000 ppm
CO2
0 - 100 RH%
(− 40°𝐶) − (+ 1

Carbon Dioxide
CO2 Sensor
(Arduino &
Raspberry Pi
Compatible)
Effective
measurement
range:
0 - 10,000 ppm
CO2
Cost:
$49.97

NDIR CO2
Sensor
MH-Z14A PQM
NDIR Infrared
Carbon Dioxide
Sensor Module
Effective
measurement
range:
0 - 5,000 ppm
CO2
Cost:

https://www.ti.com/product/HDC2021
https://components101.com/dht11-temperature-sensor
https://www.mouser.com/new/adafruit/adafruit-aht20-temperature-humidity-sensor/
https://www.adafruit.com/product/385
https://www.silabs.com/sensors/humidity/si7006-13-20-21-34/device.si7013-a20-gm1
https://www.silabs.com/sensors/humidity/si7006-13-20-21-34/device.si7013-a20-gm1
https://www.dfrobot.com/product-1114.html
https://www.adafruit.com/product/1733
https://moderndevice.com/product/wind-sensor/
https://moderndevice.com/product/wind-sensor/
https://www.argentdata.com/catalog/product_info.php?products_id=145
https://www.argentdata.com/catalog/product_info.php?products_id=145
https://projects.raspberrypi.org/en/projects/build-your-own-weather-station/8
https://projects.raspberrypi.org/en/projects/build-your-own-weather-station/8
https://www.co2meter.com/products/k-30-co2-sensor-module
https://store.arduino.cc/usa/gravity-analog-co2-gas-sensor
https://learn.adafruit.com/adafruit-scd30
https://tinkersphere.com/sensors/1321-carbon-dioxide-co2-sensor-arduino-raspberry-pi-compatible.html
https://usa.banggood.com/NDIR-CO2-Sensor-MH-Z14A-PWM-NDIR-Infrared-Carbon-Dioxide-Sensor-Module-Serial-Port-0-5000PPM-Controller-p-1248270.html?utm_source=googleshopping&utm_medium=cpc_organic&gmcCountry=US&utm_content=minha&utm_campaign=minha-usg-pc¤cy=USD&cur_warehouse=CN&createTmp=1
https://usa.banggood.com/NDIR-CO2-Sensor-MH-Z14A-PWM-NDIR-Infrared-Carbon-Dioxide-Sensor-Module-Serial-Port-0-5000PPM-Controller-p-1248270.html?utm_source=googleshopping&utm_medium=cpc_organic&gmcCountry=US&utm_content=minha&utm_campaign=minha-usg-pc¤cy=USD&cur_warehouse=CN&createTmp=1

Cost:
$58.95

$22.99

Rain Sensor Arduino Rain
Drop Sensor
Cost:
$9.95

Wind/Rain
sensor Argent
Systems
(Raspberry Pi
compatible)
Cost:
$68.00

Mesh Network
Implementation

MTM-CM5000-
MSPWireless
Sensor Node
IEEE 802.15.4
compliant
2.4GHz
Wireless
Module
Range:
~120m(outdoor)

SLTB004A
Thunderboard
Sense 2
Sensor-to-Cloud
Advanced IoT
Kit
Wireless SoC
w/ multi-protocol
radio
2.4GHz ceramic
chip antenna
Cost:
$19.99

Digi XBee
ZigBee Mesh
Kit
Include three
XBee Grove
development
boards, three
XBee ZigBee
modules
Cost:
$89.00
(Could buy
individ-
ual modules
too)

MICA2 Basic Kit
(MOTE-KIT4x0)

Solar Energy &
Battery

USB / DC /
Solar Lithium
Ion/Polymer
charger - v2
Output
Voltage:
3.7/4.2V
Cost:
$17.50

Solar Panel/
Voltage
Regulator/
Lithium Ion
Battery/ 6V DC,
500mA Solar
Panel
Output
Voltage:
3.7V
Cost:
$33.32

2 Watt Solar
Charger Kit
Output
Voltage:
5V
Cost:
$59.00

Power ESP32
w/ Solar Panels
(includes
battery level
monitoring)
Output
Voltage:
4.2V
Cost:
$26.55

SIM Cards Telnyx

One-time
charge: $1
Monthly fee:
$2.00/month
Data rate:
$0.01/MB

Arduino Sim

90-day 10MB
free trial,
followed by
5MB at $1.50
per month

Limitation: only

https://components101.com/sensors/rain-drop-sensor-module
https://components101.com/sensors/rain-drop-sensor-module
https://www.argentdata.com/catalog/product_info.php?products_id=145
https://www.argentdata.com/catalog/product_info.php?products_id=145
https://projects.raspberrypi.org/en/projects/build-your-own-weather-station/8
https://projects.raspberrypi.org/en/projects/build-your-own-weather-station/8
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.mouser.com/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A%3D%3D&utm_source=eciaauthorized&utm_medium=aggregator&utm_campaign=XKB2-Z7T-WZM&utm_term=XKB2-Z7T-WZM&utm_content=DIGI
https://www.mouser.com/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A%3D%3D&utm_source=eciaauthorized&utm_medium=aggregator&utm_campaign=XKB2-Z7T-WZM&utm_term=XKB2-Z7T-WZM&utm_content=DIGI
https://www.mouser.com/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A%3D%3D&utm_source=eciaauthorized&utm_medium=aggregator&utm_campaign=XKB2-Z7T-WZM&utm_term=XKB2-Z7T-WZM&utm_content=DIGI
https://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-rf-modules/xbee-zigbee#partnumbers
http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/MICA2_%20Basic_Kit.html
http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/MICA2_%20Basic_Kit.html
https://www.adafruit.com/product/390
https://www.adafruit.com/product/390
https://www.adafruit.com/product/390
https://www.adafruit.com/product/390
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://voltaicsystems.com/2-watt-kit/
https://voltaicsystems.com/2-watt-kit/
https://randomnerdtutorials.com/power-esp32-esp8266-solar-panels-battery-level-monitoring/
https://randomnerdtutorials.com/power-esp32-esp8266-solar-panels-battery-level-monitoring/
https://randomnerdtutorials.com/power-esp32-esp8266-solar-panels-battery-level-monitoring/
https://randomnerdtutorials.com/power-esp32-esp8266-solar-panels-battery-level-monitoring/
https://randomnerdtutorials.com/power-esp32-esp8266-solar-panels-battery-level-monitoring/
https://support.telnyx.com/en/articles/3654849-wireless-billing
https://store.arduino.cc/digital/sim

connects to
Arduino IoT
Cloud

Cloud Platform AWS Google

Cloud Platform

IoT Core

Microsoft Azure

IoT Hub

Arduino IoT
Cloud

Notification API Twilio

SMS:
$0.0075/segme
nt
https://www.twili
o.com/sms/prici
ng/us
Phone:
$0.0130/min
https://www.twili
o.com/voice/pric
ing/us
Email: Free
with 100
emails/day limit
https://sendgrid.
com/pricing/

Vonage

SMS:
$0.0068/messa
ge
https://www.von
age.com/comm
unications-apis/
sms/pricing/
Phone:
$0.0139/min
Email:
$0.000843/emai
l

Telnyx

SMS:
$0.0025/segme
nt
Phone:
$0.0070/min
https://telnyx.co
m/pricing/call-co
ntrol

Morphological Chart: This chart outlines all the design options considered for both
hardware and software components of our device. On the hardware side we looked at
various options for a microcontroller as well as several different sensors of interest to
our design, such as: humidity/temperature sensor, wind sensor, carbon sensor and rain
sensor. We also looked at a couple of different SIM cards to give our microcontroller
network service to connect to our web interface. A couple of additional hardware things
we looked at were options for implementing solar energy into our device, and options for
implementing a mesh network into our device. On the software side of things we
considered our options for the cloud platform and notification API.

https://cloud.google.com/products/calculator
https://cloud.google.com/iot-core
https://docs.microsoft.com/en-us/azure/iot-hub/
https://www.twilio.com/sms/pricing/us
https://www.twilio.com/sms/pricing/us
https://www.twilio.com/sms/pricing/us
https://www.twilio.com/voice/pricing/us
https://www.twilio.com/voice/pricing/us
https://www.twilio.com/voice/pricing/us
https://sendgrid.com/pricing/
https://sendgrid.com/pricing/
https://www.vonage.com/communications-apis/sms/pricing/
https://www.vonage.com/communications-apis/sms/pricing/
https://www.vonage.com/communications-apis/sms/pricing/
https://www.vonage.com/communications-apis/sms/pricing/
https://telnyx.com/pricing/call-control
https://telnyx.com/pricing/call-control
https://telnyx.com/pricing/call-control

Decision Table

Microcontroller Decision Table

Microcontroller Raspberry Pi 4
Model B 2GB

Arduino Nano
33 IoT

Raspberry Pi
Zero W

ESP32
(dual-core or
single-core)
NodeMCU

ESP8266
NodeMCU

Price $35 $18.40 $10.00 ~$10 ~$5

Compute Power 2GB Ram
Quad Core ARM
x64, 1.5 GHZ

256KB CPU
Flash memory
32KB SRAM

512MB Ram
Broadcom
1GHZ processor

520 KiB SRAM
1 or 2 core
Xtensa LX6,
240Mhz

32-bit RISC
CPU Xtensa
LX106 - 80Mhz

Networking 2.4 GHz, 5.0
GHz WiFi
Bluetooth 5.0
BLE
Gigabit Ethernet

2.4GHz WiFi
Bluetooth 4.2
BLE

2.4GHz WiFi
Bluetooth 4.1
BLE

2.4GHz WiFi
Bluetooth 4.2
BLE

2.4GHz WiFi

Power Consumption >= 5V * 500mA
= 2.5W Typical
No Deep Sleep

>= 3.3V *
~20mA = ~0.1W
Typical
Supports Deep
Sleep

>= 5V * ~200mA
= 1W Typical
No Deep Sleep

>= 3.3V *
~50mA = ~0.2W
Typical
Supports Deep
Sleep

>= 3.3V *
~30mA = ~0.1W
Typical
Supports Deep
Sleep

Operating
Temperatures

0-50 C, 32-122
F

0-50 C, 32-122
F

–40-125°C,
-40-257 F

–40-125°C,
-40-257 F

Sensor / IO
compatibility

40 pin GPIO
header
Up to 6x UART
Up to 6x I2C
Up to 5x SPI
1x SDIO interface
1x DPI
1x PCM
Up to 2x PWM
channels
Up to 3x GPCLK
outputs

14 pins GPIO
Up to 1x UART
Up to 1x I2C
Up to 1x SPI
8 Analog Inputs
1 Analog Output

40 pin GPIO
Header
Up to 6x UART
Up to 6x I2C
Up to 5x SPI
Up to 11x PWM

34 pins GPIO
18 ADC Channels
Up to 3x SPI
Up to 3x UART
Up to 2x I2C
Up to 16 PWM
Channels
Up to 2 DAC
Up to 2x I2S
Up to 10x
Capacitive
Sensing IO

16 GPIO Pins
1x ADC
1x UART
1x SPI
1x i2C

Microcontroller Decision Table: Various microcontrollers and their components, like
price, power, ect., were considered when making our final decision. In order to
successfully achieve our desired project, we need a microcontroller that can withstand

outside temperatures as well as be able to connect with our sensors. In the end, we
chose two options that met our requirements, the ESP32 SIM800L and the T-SIM7000G
ESP32. We chose the former due to its affordability, although it only works on 2G
networks. The later network microcontroller is able to work on 4G networks, which
makes it more expensive, but both are compatible with our project.

Design Implementation Cost Decision Table

Option 1 2 3

Microcontroller ESP32
Cost:
$15.00

Arduino Nano 33 IoT
Cost:
$18.40

Raspberry Pi Model B
2GB
Cost:
$35.00

Temp/Humidity
Sensor

TI HDC2021 Low-power
humidity and temperature
digital sensor
Effective measurement
range:
(− 40°𝐶) − (+ 125°𝐶)
0 - 100 RH%
Cost:
$2.67

Adafruit AHT20
Temperature & Humidity
Sensor
(pro- reaches a lil higher
temp ranges ~185 F)
Effective measurement
range:
(− 40°𝐶) − (+ 85°𝐶)
0 - 100 RH%
Cost:
$4.50

DHT22
Temperature/Humidity
Sensor
Effective measurement
range:
(− 40°𝐶) − (80°𝐶)
0 - 100 RH%
Cost:
$9.95

Wind Sensor Wind Sensor Rev. C
Effective measurement
range:
0 - 26.8224m/s
Cost:
$17.00

Anemometer Adafruit
1733
Effective measurement
range:
0.5-50m/s
Cost:
$44.95

Wind/Rain sensor Argent
Systems
(Raspberry Pi compatible)
Cost:
$68.00

Rain Sensor Arduino Rain Drop Sensor
Cost:
$9.95

Arduino Rain Drop Sensor
Cost:
$9.95

Rain Sensor implemented
from Wind Sensor above

Carbon Sensor NDIR CO2 Sensor
MH-Z14A PQM NDIR
Infrared Carbon Dioxide
Sensor Module
Effective measurement
range:
0 - 5,000 ppm CO2
Cost:
$22.99

Carbon Dioxide CO2
Sensor (Arduino &
Raspberry Pi Compatible)
Effective measurement
range:
0 - 10,000 ppm CO2
Cost:
$49.97

Senseair K30 10,000ppm
CO2 sensor
(pro - cheap)
Effective measurement
range:
0 - 10,000 ppm CO2
Cost:
$85.00

https://www.ti.com/product/HDC2021
https://www.mouser.com/new/adafruit/adafruit-aht20-temperature-humidity-sensor/
https://www.adafruit.com/product/385
https://moderndevice.com/product/wind-sensor/
https://www.adafruit.com/product/1733
https://www.adafruit.com/product/1733
https://www.argentdata.com/catalog/product_info.php?products_id=145
https://projects.raspberrypi.org/en/projects/build-your-own-weather-station/8
https://components101.com/sensors/rain-drop-sensor-module
https://components101.com/sensors/rain-drop-sensor-module
https://usa.banggood.com/NDIR-CO2-Sensor-MH-Z14A-PWM-NDIR-Infrared-Carbon-Dioxide-Sensor-Module-Serial-Port-0-5000PPM-Controller-p-1248270.html?utm_source=googleshopping&utm_medium=cpc_organic&gmcCountry=US&utm_content=minha&utm_campaign=minha-usg-pc¤cy=USD&cur_warehouse=CN&createTmp=1
https://tinkersphere.com/sensors/1321-carbon-dioxide-co2-sensor-arduino-raspberry-pi-compatible.html
https://tinkersphere.com/sensors/1321-carbon-dioxide-co2-sensor-arduino-raspberry-pi-compatible.html
https://www.co2meter.com/products/k-30-co2-sensor-module

Mesh Network
Implementation

SLTB004A Thunderboard
Sense 2 Sensor-to-Cloud
Advanced IoT Kit
Wireless SoC w/
multi-protocol radio
2.4GHz ceramic chip
antenna
Cost:
$19.99/unit ($60.00/3units)

SLTB004A Thunderboard
Sense 2 Sensor-to-Cloud
Advanced IoT Kit
Wireless SoC w/
multi-protocol radio
2.4GHz ceramic chip
antenna
Cost:
$19.99/unit ($60.00/3units)

Digi XBee ZigBee Mesh
Kit
Include three XBee Grove
development boards, three
XBee ZigBee modules,
three Micro-USB cables
Cost:
$89.00
(Could buy individ-
ual modules too)

4g/LTE Modem

Solar Power &
Battery

Solar Panel/ Voltage
Regulator/ Lithium Ion
Battery/ 6V DC, 500mA
Solar Panel (3.5W)
Output Voltage:
3.7V
Cost:
$33.32

Solar Panel/ Voltage
Regulator/ Lithium Ion
Battery/ 6V DC, 500mA
Solar Panel (3.5W)
Output Voltage:
3.7V
Cost:
$33.32

2 Watt Solar Charger Kit
Output Voltage:
5V
Cost:
$59.00

$ Total $160.93 $100.93 $221.09 $161.09 $345.95 $256.95

Score ((125/3 + 27/3 + 5000/3)/2
+ 3.5/2) / 1.6093 = 534.65

((85/3 + 50/3 + 10000/3)/2
+ 3.5/2) / 2.2109 = 764.81

((85/3 + 25/3 + 10000/3)/2
+ 2/2) / 3.4595 = 487.35

Weight Design 1 Design 2 Design 3

Cost 0.4 7 4 0

Sensor Power 0.3 6 10 9

Solar Power 0.3 7 7 4

Score Total 6.7 6.7 3

Design Implementation Cost Decision Table: In this design table, we choose three
different design implementations that contain one type of microcontroller, one of each
sensor, and a battery option. When we first began our design, we planned to have each
IoT device connect with each other through a mesh network. We also planned to have
four different types of sensors that aid in detecting a fire through environmental
monitoring. Lastly, we decided to have energy sourcing as an option to power our
device.

https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.mouser.com/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A%3D%3D&utm_source=eciaauthorized&utm_medium=aggregator&utm_campaign=XKB2-Z7T-WZM&utm_term=XKB2-Z7T-WZM&utm_content=DIGI
https://www.mouser.com/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A%3D%3D&utm_source=eciaauthorized&utm_medium=aggregator&utm_campaign=XKB2-Z7T-WZM&utm_term=XKB2-Z7T-WZM&utm_content=DIGI
https://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-rf-modules/xbee-zigbee#partnumbers
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://www.circuitbasics.com/how-to-use-solar-panels-to-power-the-arduino/
https://voltaicsystems.com/2-watt-kit/

After thoughtful consideration, we decided to eliminate the mesh network
component for now. If given the opportunity of extra time, we will try to implement a
connected network into our project. We also decided not to have a wind sensor, seeing
that we had sufficient sensors to detect a fire.

The score of each design was determined based on three main categories, cost,
sensor power, and solar. For the cost, we agreed that the IoT device should be as
inexpensive as possible, allowing us to build numerous devices. The most expensive
design option was number 3, costing roughly $250, which received zero points for cost.
In order to factor in the individual cost of each component, we decided to give one point
to every item that was less than $25. For the sensor power, we ranked the sensor with
the most power a 5, and the sensor with the least power a 3. The highest-ranking was
given to the temperature/humidity sensor with the highest range of temperature and the
carbon sensor with the most granularity. Lastly, to determine the score of each solar
battery, we multiplied the watts by 2 to get a score out of 10 and assigned that number
to their respective scores. Adding up the scores, we got the final score totals. There was
a tie between design 1 and 2, but ultimately we decided design 1 was the best option for
our team.

2. Planning
2.1 Gantt Chart

Our Gantt chart was divided into three subsections, where each subsection was
split amongst two team members. These subsections included hardware,
software, and cloud. Each team member was responsible for updating their task
accordingly. The tasks with names in red were determined to be ones that were
most important for our functional prototype, so those tasks were prioritized.

2.2 CPM & PERT Analysis

The critical path was calculated to be following the hardware completion of the
project. After listing each task, the team estimated the length of days based on
previous experience or estimation.

2.3 Division of Labor and Collaboration
When creating the tasks in the Gantt chart, we began by grouping them into the
sections of our design that they related to. These sections were the sensor
device software, device hardware, and cloud implementation. We were given the
opportunity to decide which tasks interested us the most, splitting ourselves up
so that two people worked on each section. The cloud implementation was done
by Quinn and Julia, the hardware portion was done by Aracely and Jose, while
Logan and Salvador worked on the device’s software. Within the individual
sections, the group had the option to split up the work or collaborate on each
task. For the hardware and cloud implementation, the team members worked
collaboratively on each assignment. The software implementation was split
between the two members. Communication between each section was crucial to
get the whole product working. The team’s main mode of communication was
through discord and zoom, where we would discuss the team's progress weekly.

3. Test Plan & Results

3.1 Hardware Tests

● CO2 Sensor
○ Purpose: To ensure that the right CO2 ppm levels were being read
○ Method: Attempt to increase the levels of ppm by blowing directly

into the sensor and decrease the ppm level by placing the sensor in
an outside environment for some controlled time

○ Expected Result: The ppm levels will increase an obvious amount
when blown into, but decrease when the sensor is taken outside

○ Actual Result: The ppm level increased to the highest level,
5000ppm when it was blown into. But the sensor would take almost
five minutes to return to normal ppm levels, even if it was placed
outside

● Temperature and Humidity Sensor
○ Purpose: To make sure the correct temperature and humidity is

being outputted from the sensor
○ Method: Increase both the temperature and humidity by placing a

damp paper towel near the sensor and using a hair dryer in high
heat setting to blow air to the sensor

○ Expected Results: The output of the sensor was supposed to
change with respect to the hot air being blown into it. When the hot
air is directly pointed towards the sensor, the temperature and
humidity should increase. If the air from the hair dryer was set to a
lower setting, the temperature should decrease but the humidity
should increase. When there are no factors placed on the sensor,
the sensor should read room temperature and humidity.

○ Actual Results: When the sensor was placed under different
conditions, there was no change in the output. The output remained
the same constant numbers throughout the entire tests.

● Rain Sensor
○ Purpose: To make sure the sensor is being triggered properly when

in contact with water
○ Method: Place the sensor in water, or lay a wet paper towel above

the sensor
○ Expected Results: The sensor would properly detect when it is in

contact with water. The sensor should also be able to detect when
only a part of it is in water.

○ Actual Results: The sensor would display it was in contact with
water when it was only touched with a finger. Therefore the
sensitivity needed to be changed in the sensor so it will not detect
anything other than water.

3.2 Microcontroller Software Tests
● WiFi Connectivity

○ Purpose: To send and receive data and commands and
communicate alongside the cloud server using a wireless
connection.

○ Method: Create a simple HTML page that goes online when the
microcontroller is on.

○ Expected Result: Server will go online once the microcontroller is
on showing that it has the ability to connect to WiFi and user will be
able to access the web page.

○ Actual Result: Server successfully went online and users were able
to access the website. Plugging in the lithium battery did cause the
microcontroller to remain on constantly which was unexpected.

● Cellular Connectivity
○ Purpose: To send and receive data and commands and

communicate alongside the cloud server using a cellular
connection.

○ Method: Ping various web-servers such as Google, Print to serial
parameters of cell signal strength

○ Expected Result: Receive response from web-server and have
results of signal strength printed to console, verifying that device
can connect to 4G LTE and connect to the internet

○ Actual Result: Incompatibility with SIM card prevented connection
to internet, serial console output verified connectivity to 4G LTE

3.3 Cloud Tests
● Server API Security Test. (Run on both Database and web application

servers)
○ Purpose: To make sure that our web server is protected by an API key.
○ Method: Attempt to make a request with an API key to ensure the server is

currently running. If the server is operational, attempt to make the same
request without an API key in the HTTPS header.

○ Expected Result: The first request should succeed and return 200, the
second should fail and return 403.

○ Actual Result: The first request returns a 200 status code, the second
returns 403.

● Data/Location Request Test
○ Purpose: Determine if requests inputting location or sensor data can be

correctly handled by the server

○ Method: Using an API key, submit POST requests to /nodes/location and
/nodes/data with sample values in the request body.

○ Expected Result: The server’s database should contain the new data
○ Actual Result: We tested this with a JSON file instead of a SQL database.

The file acquired the new values as expected.
● Fire Detection Logic Test

○ Purpose: Test the accuracy of the system at identifying an imminent fire
from sensor data

○ Method:
i. Use a dataset of sensor readings collected over time in a

wilderness environment where some fires have taken place nearby.
Each row of sensor readings should be labeled as either occurring
or not occurring during a fire.

ii. Set the server’s database to data that occurred in a certain time
window within the dataset. Then run the detection method on this
data and store the result.

iii. Repeat ii. for all possible time windows
○ Expected Result: The true-positive and true-negative rates of the fire

classifications should be above 90%.
○ Actual Result: This test cannot currently be run since we are unable to find

a suitable dataset, and creating data ourselves would be infeasible as it
would require burning actual trees.

● End-to-End Test
○ Purpose: Test that the characteristics of a sensor device’s environment

can be forwarded to the server, and an alert will be triggered only when
the environment enters a state associated with a fire. This test also
determines if the location and fire risk for each device can be correctly
represented by the web UI.

○ Method:
i. Using a potentiometer to simulate sensors that are not working,

create a low-risk environment, which is made up of low heat, high
humidity and low CO2.

ii. Gradually raise the temperature, lower the humidity and increase
the CO2 as far as possible. Repeat this test to check that the
sensor values can change in any order or at the same time, and
correct functionality will still follow.

iii. Revert the environment to a low-risk one.
○ Expected Result:

i. The dot related to the sensor node should be green, and the server
should not have sent any alerts.

ii. The dot should turn yellow when the temperature is high and the
humidity is low, but the CO2 is not high enough. The dot should
turn red and an alert should be sent only once all three values
reach dangerous levels. The dot should be located correctly on the
map.

○ Actual Result: We tested the system as described except that we only
changed the sensor values in one order and did not completely revert
them to their previous values. We have not integrated alerts yet into our
full system, but we were able to see the dot’s color change correctly.

○ Discussion: A real end-to-end test would involve setting up the device in a
wildland area and starting a fire to see if an alert would be detected. This
obviously is not feasible for safety reasons. Instead, we had to create our
own definition of an environment that would likely harbor a fire based on
the temperature, humidity and CO2 changes we could safely cause. In
order to differentiate a “high” value from a “low” one in the test we
conducted, we set the thresholds for temperature, humidity and CO2 to be
50, 50 and 1500, respectively.

● Server Blacklist Test
○ Purpose: If a device starts misbehaving we want the ability to block its API

key so that we don’t allow a bad actor into our system.
○ Method: Start sending repeated bad requests every minute from an API

key and wait to see how long it takes for the server to stop responding.
○ Expected Result: After a few minutes we should start getting 403

Forbidden responses from the server.
○ Actual Result: Untested.

● Database Register Device Test
○ Purpose: Make sure that when a new device is registered we create a new

table for it.
○ Method: List the tables available in our database. Check to make sure our

new table does not already exist. Register a new device and check the
table list again to make sure that it was created.

○ Expected result: The new device table does not exist before running the
test, but it does exist after.

○ Actual results: After testing the system we found that the database table is
created as expected. However, we did not fully integrate it with the main
server the devices will interact with, so it is only partially complete.

● Database Insert Data Test
○ Purpose: Make sure that when data comes into the database it generated

the timestamp and entry id properly.

○ Method: Check a table’s data and see the most recent entry. Add a new
data point to the table and make sure that each of the auto-generated
fields are correct.

○ Expected Result: The entry ID of the newest data point should be one
higher than the previous entry, and the sample date should be the time
you ran the entry function.

○ Actual Result: When we ran the test the entry id and date/time were
properly generated. This is only tested locally and not integrated into the
main server so it is only partially tested.

● Database Get Most Recent Data Test
○ Purpose: Make sure that when we store data it is still retrievable.
○ Method: Attempt to retrieve data from an existing table. Add a new data

point to the table and then run the retrieve again.
○ Expected Result: We should get old data on the first get and new data on

the second.
○ Actual Result: When we ran the test we got the expected result. However,

this was only tested locally and not integrated into the main server so it is
only partially tested.

4. Review

● Aracely Cano-Gramajo - Overall I really enjoyed working on this project and
working with the team members. One thing that I would do differently given the
opportunity, would be to thoroughly research the sensors before purchasing
them. Had this been done before buying all the hardware components, we would
have bought the correct sensor for temperature and humidity, and our prototype
would have been better. I also would have liked to incorporate more sensors.
Aside from that, I think the team did well given the constraint of working remotely.

● Jose Santiago - I really enjoyed seeing a project through the design process,
from the drawing board to the prototype. Working in a team can be difficult, but
everyone in the team was reliable and did their work diligently. Teamwork was a
little more difficult in the remote setting but I appreciate the work everyone put
into completing this project. Something I think we could have done better was the
planning. The planning was pretty solid, but there were a few major oversights
we had. I think we would have benefited a lot from learning about the causes of
wildfires as well as the causes of fires in general. Studying and understanding
the source of fires could help us design a device with sensors that would be best
for detecting fire risk. Another thing we overlooked was sensor compatibility with
our microcontroller. If we read a little into the device datasheets before buying

our parts we may have been able to get a temperature and humidity sensor that
worked for our design. Overall this was an insightful experience into working in a
team to design a device.

● Quinn Schmidt - Working with the team was a really good experience for me.
Everyone cared about the project and did their work well. I think we could have
benefited from meeting more than once per week especially during the brunt of
the research/planning of last quarter and when working towards a functional
prototype this quarter.

● Logan Phillips - This project was a great learning experience for me and allowed
me to really evaluate how work gets done in a group setting. Having this project
take place during COVID was a challenge as all work had to be done remotely,
however, there was much learned in the process. If I could do the project again, I
would like it to be in person. This would allow for a deeper level of collaboration
and understanding between team members. Another change I would make is in
the overall design of the device. I would like to take the design further and have a
fully fleshed out enclosure and circuit design, allowing for a near-deployment
state.

● Julia Schneidinger - It was great working with everyone on the team, and I am
glad that I got experience working on a large project in a group setting. If I could
do the project differently, I would have done more research on fire event
classification methods earlier on in the quarter, so the fire risk logic would be
better suited for real-world use. It also might have helped to get more information
about how to best fit this system to the needs of fire protection agencies.

● Salvador Castellanos - This is the first engineering project where I had the
opportunity to work with a team and I enjoyed the whole experience. The only
aspect that I did not enjoy very much was working remotely as it made
communication slightly more difficult but this is something that happens in a real
life environment as well and it taught us how to adapt to these circumstances.
Something I wish we had time to do would have been deploying the devices and
seeing how well the device worked out in the forest with a fully working enclosure
as well to keep the device safe. Overall, throughout the two quarters this project
has allowed me to learn many different concepts and working with the team has
been a great experience.

